

CAR T-Cell Therapies for B-Cell Lymphoma in the Community Setting: Empowering Peer-to-Peer Education

Reference Aid

Four Major Anti-CD19 CAR T-Cell Products for B-Cell NHL

	Axicabtagene ciloleucel ¹	Brexucabtagene autoleucel ²	Tisagenlecleucel ³	Lisocabtagene maraleucel ⁴
Construct	antiCD19- CD28 -CD28TM-CD3z	antiCD19- CD28 -CD28TM-CD3z	antiCD19- 4-1BB- CD8αTM-CD3z	antiCD19- 4-1BB -CD28TM-CD3z
Vector	Retrovirus	Retrovirus	Lentivirus	Lentivirus
T-cell manufacturing	Bulk	Bulk	Bulk	Defined doses CD4, CD8
Dose	2 × 10 ⁶ /kg (max 2 x 10 ⁸)	r/r MCL: 2 × 10 ⁶ /kg (max 2 x 10 ⁸) r/r B-ALL: 1 × 10 ⁶ /kg (max 1 x 10 ⁸)	Pedi B-ALL: <50 kg, 0.2 to 5.0 x 10 ⁶ /kg >50 kg, 0.1 to 2.5 x 10 ⁸ r/r DLBCL, r/r FL: 0.6 to 6.0 x 10 ⁸	90 to 110 x 10 ⁶ (2 nd + line) 50 to 110 x 10 ⁶ (3 rd + line)
Lymphodepletion	Flu/Cy 30/500 x 3d	r/r MCL: Flu/Cy 30/500 x 3d r/r B-ALL: Flu 25 x 3d, Cy 900 x 1d	Pedi B-ALL: Flu 30 x 4d, Cy 500 x 2d r/r DLBCL, r/r FL: Flu/Cy 25/250 x 3d, or Benda 90 x 2d	Flu/Cy 30/300 x 3d
Clinical role	2 nd + line if r/r within 12 m; 3 rd + line DLBCL, PMBCL, high grade BCL, transformed FL; 3 rd + line FL	r/r MCL and r/r B-ALL	3 rd + line DLBCL, high grade BCL, transformed FL; 3 rd + line FL; pedi B-ALL	3 rd + line DLBCL, high grade BCL, PMBCL, grade 3B FL; 2 nd + line if primary r/r within 12 m or if HSCT ineligible; 3 rd + line CLL/SLL after prior BTKi & BCL2i

NHL, non-Hodgkin lymphoma; B-ALL, B-cell acute lymphoblastic leukemia; DLBCL, diffuse large B-cell lymphoma; FL, follicular lymphoma; HSCT, hematopoietic stem cell transplantation; PMBCL, primary mediastinal large B-cell lymphoma; r/r, relapsed/refractory 1. YESCARTA® (axicabtagene ciloleucel) [prescribing information]. Santa Monica, CA: Kite Pharma, Inc.;2023. 2. TECARTUS® (brexucabtagene autoleucel) [package insert]. Santa Monica, CA: Kite Pharma, Inc.;2023. 3. KYMRIAH[®] (tisangenlecleucel) [package insert]. Morris Plains, NJ: Novartis Pharmaceuticals Corp.; 2022. 4. BREYANZI[®] (lisocabtagene maraleucel) [package insert]. Bothel, WA: Juno Therapeutics Inc.; 2024.

CD19 CAR T Cells for DLBCL Pivotal Trial Results After 2 or More Lines of Systemic Therapy

	ZUMA-1 ^{1,2}	JULIET ^{3,4}	TRANSCEND ^{5,6}
Product	Axi-cel*	Tisa-cel**	Liso-cel***
Costimulatory domain	CD28	4-1BB	4-1BB
# pheresed	111	167	344
# treated	101	115	270
ORR, %	83	53	73
CR, %	58	39	53
mPFS, months	5.9	2.9	6.8
mOS, months	25.8	11.1	27.3

Cross-trial comparisons are for discussion purposes only

*Median follow-up of 63.1 months. **Median follow-up of 40.3 months. ***Median follow-up of 19.9 months.

1. Neelapu SS, et al. *N Engl J Med*. 2017;377:2531-2544. 2. Neelapu SS, et al. *Blood*. 2023;141(19):2307-2315. 3. Schuster SJ, et al. *N Engl J Med*. 2019;380:45-56. 4. Schuster SJ, et al. *Lancet Oncol*. 2021;22(10)1403-1415. 5. Abramson JS, et al. *Lancet*. 2020;396:839-852. 6. Abramson JS, et al. *Blood*. 2024;143(5):404-416.

ZUMA-7, TRANSFORM, BELINDA Results: Second-Line Treatment

	ZUMA-7 ^{1,2}	TRANSFORM ^{3,4}	BELINDA ^{5*}
Product	Axi-cel vs SoC	Liso-cel vs SoC	Tisa-cel vs SoC
Costimulatory domain ⁶	CD28	4-1BB	4-1BB
ORR (%)	83% vs 50%	87% vs 49%	46% vs 43%
CR (%)	65% vs 32%	74% vs 43%	28% vs 28%
mEFS (months)	10.8 vs 2.3	NR vs 2.4	3.0 vs 3.0
EFS rate (%)	4-year: 39% vs 17%	18-month: 53% vs 21%	
mPFS (months)	14.7 vs 3.7	NR vs 6.2	
PFS rate (%)	4-year: 42% vs 24%	18-month: 58% vs 29%	
mOS (months)	NR vs 31.1	NR vs 29	
OS rate (%)	4-year: 55% vs 46%	18-month: 73% vs 61%	

Cross-trial comparisons are for discussion purposes only

*Not an FDA approved indication for relapsed disease or primary refractory disease within 12 months of first-line therapy.

1. Locke et al. *N Engl J Med*. 2022;386(7):640-654. 2. Westin J, et al. *N Engl J Med*. 2023;389:148-157. 3. Kamdar M, et al. *Lancet*. 2022;399(10343):2294-2308. 4. Abramson J, et al. *Blood*. 2023;141(14):1675-1684. 5. Bishop et al. *N Engl J Med*. 2022;386(7):629-639. 6. Meng J, et al. *Front Oncol*. 2021;11:698607.

How to Sequence Newer 2nd- and 3rd-Line Therapies For LBCL

HYPOTHETICAL CONCERN:

Targeting CD19 ahead of CD19 CAR T cells, so best to avoid if CD19 CAR T cells are planned

- Tafasitamab: receptor occupancy issue, wash-out of at least 6-12 wks is ideal
- Loncastuximab: less of a concern but still best to reserve for CD19+ relapses AFTER CAR or for CAR ineligible
 - Loncastuximab after CAR has been shown to be safe and effective

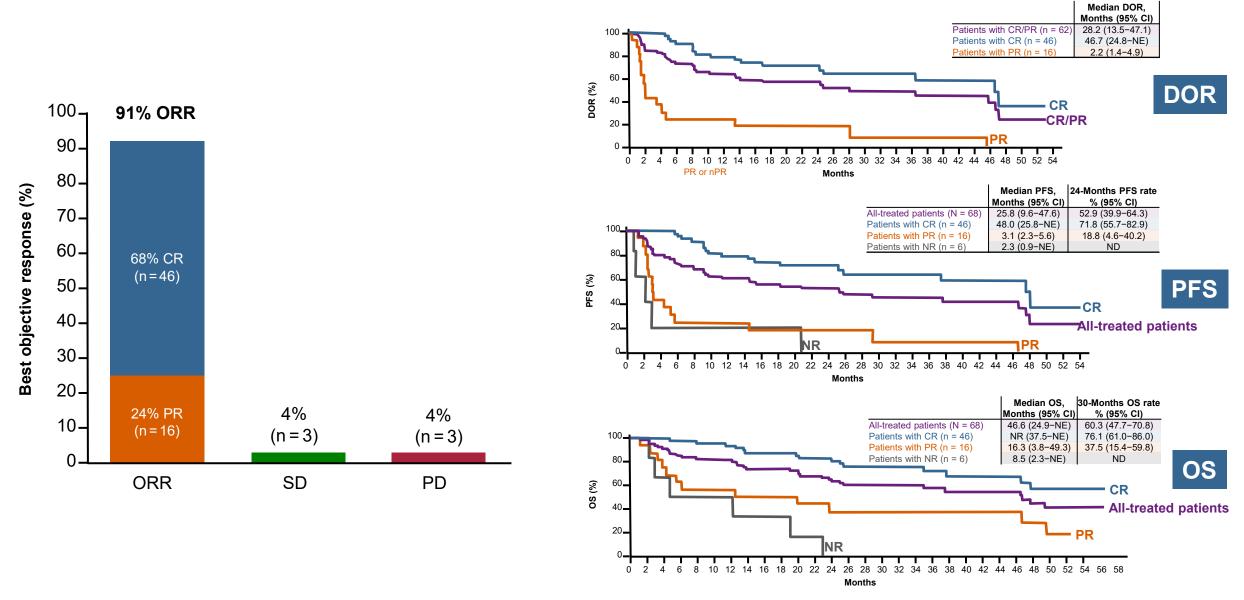
HYPOTHETICAL CONCERN:

T cell exhaustion due to bispecific antibody engagement if bispecifics used prior to CAR T cells

- Try to avoid bispecifics ahead of CAR T cells until proven effective (early studies suggest they are)
- CAR T cells before bispecific known to be safe and effective from trials
- If cannot avoid, try to have a 12+ wk wash out

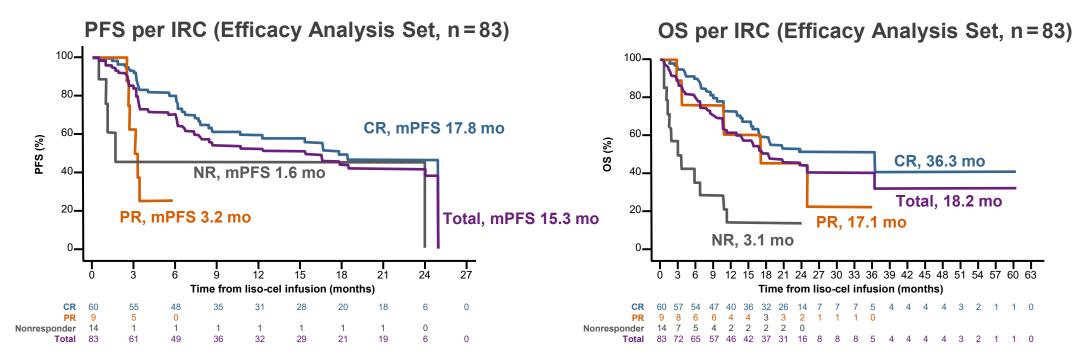
VALID CONCERN:

T-cell toxic therapies ahead of leukapheresis and/or lymphodepletion


- Bendamustine within 6-12 m of leukapheresis
- High doses of corticosteroids
 within 7 d of leukapheresis and
 5 d of CAR T-cell infusion
- Other immunosuppressants within 5 half-lives of leukapheresis and/or CAR Tcell infusion

CD19 CAR T Cells for LBCL: Product Choice

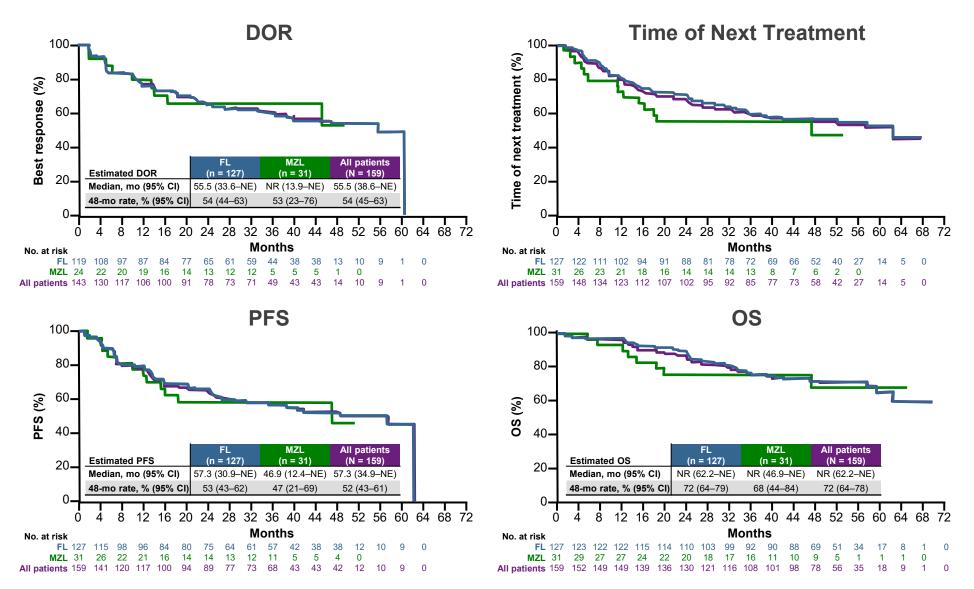
GENERAL CONSIDERATIONS^{1,2}


- Comparing across trials and series is impossible and should be avoided (except for the purposes of this slide!)
- First and foremost: Balance of safety and efficacy
 - Axi-cel: Great efficacy, acceptable but greater toxicity
 - Tisa-cel: Slightly lower efficacy, better toxicity profile
 - Liso-cel: Great efficacy and better toxicity profile; reduced risk of in-patient procedures in the 30 days after infusion and critical care admission compared with axi-cel³
- However, balance of safety and efficacy become moot if the product comes back too late (or not at all) for the
 patient
 - Axi-cel: Fastest and highly reliable turnaround
 - Tisa-cel: Initial manufacturing kinks but MUCH improved now; still takes almost a week longer than axi-cel
 - Liso-cel: Has the longest estimated turnaround time
- Product choice becomes skewed for different types of patients, making cross-series comparisons even more dangerous
 - Axi-cel: Patients with the fastest growing and highest burden of disease lymphoma
 - Tisa-cel and Liso-cel: patients with "better" lymphomas but perhaps older and with comorbidities

ZUMA-2: Brexucabtagene autoleucel in MCL

Wang M, et al. J Clin Oncol. 2023;41(3):555-567.

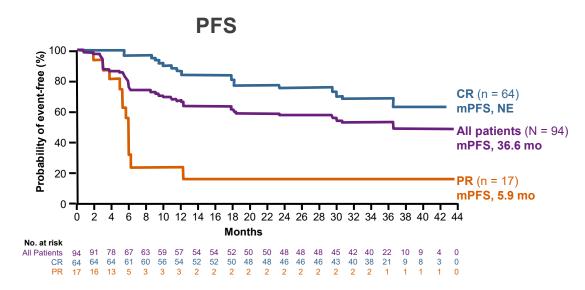
TRANSCEND NHL-001: Liso-cel in MCL

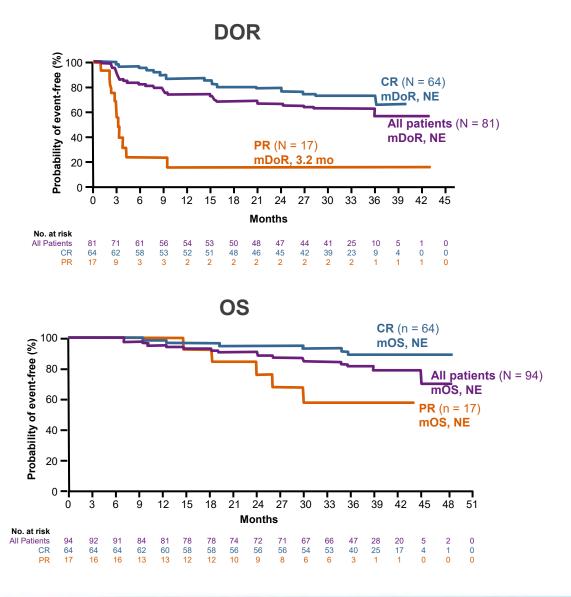

CRS and NEs (Liso-cel-treated set,	n = 88)	CRS	NEs
Any grade, n (%)		54 (61)	27 (31)
Grade 1/2		53 (60)	19 (22)
Grade 3		0	7 (8)
Grade 4		1 (1)	1 (1)
Grade 5		0	0
Median time to: (range), days	Onset	4.0 (1-10)	8.0 (1-25)
	Resolution	4.0 (1-14)	5.0 (1-45)

Other AEs of special interest, n (%)	Liso-cel-treated set (n = 88)
Prolonged cytopenias	35 (40)
Grade ≥3 infections	13 (15)
Hypogammaglobulinemia	6 (7)

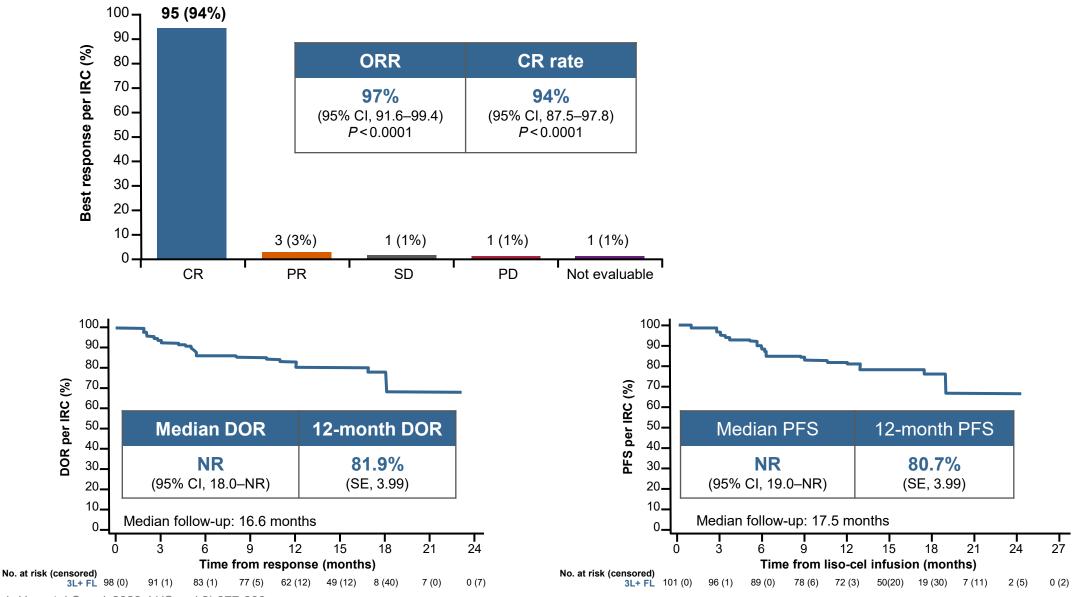
Not an FDA-approved indication.

Wang M, et al. J Clin Oncol. 2023:JCO2302214.


ZUMA-5: Axi-Cel in iNHL

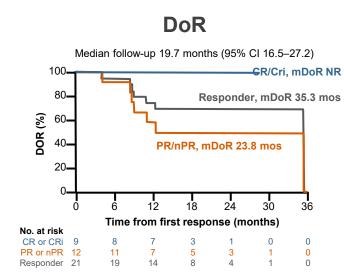


Neelapu S, et al. Blood. 2023;142 (suppl 1):4868

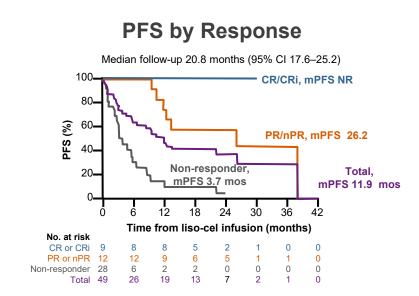

ELARA: Tisa-Cel in FL

Endpoint in efficacy analysis set (IRC assessment)	% (95 % CI) N = 94
CRR	68 (58–77)
ORR	86 (78–92)

TRANSCEND-FL: Liso-Cel Outcomes in 3L+ FL Efficacy Set (n=101)

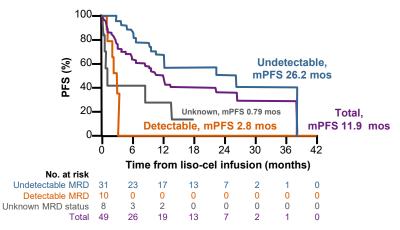

Morschhauser F, et al. Hematol Oncol. 2023;41(Suppl 2):877-880

TRANSCEND CLL-004: Liso-cel Outcomes and New Approval in CLL

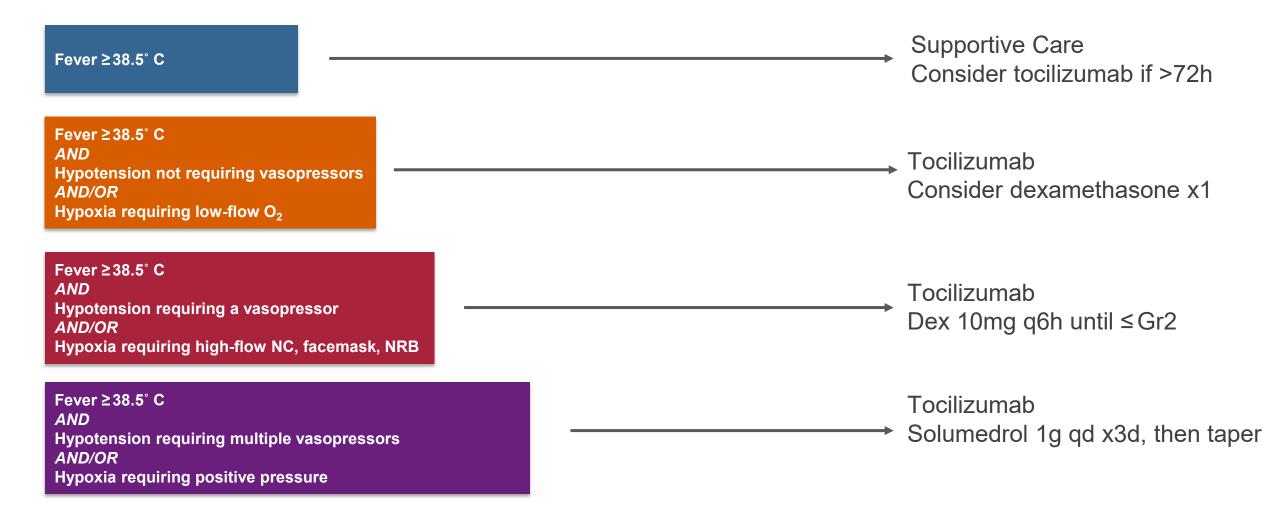

	Full population (N=96)	BTKi/ venetoclax failure (n=53)
ORR	48%	43%
CR/CRi	18%	19%
mDOR	35.25 m	35.25 m
mPFS	17.87 m	11.93 m
mOS	43.17 m	30.26 m
uMRD, blood	62%	33%
uMRD, marrow	57%	31%

Liso-cel is now **FDA approved** for treatment of adult patients with CLL/SLL after at least 2 prior lines of therapy, including a BTK inhibitor and a BCL-2 inhibitor

Liso-cel is the first CAR T-cell therapy approved for CLL/SLL



OS by Response Median follow-up 20.8 months (95% CI 17.8-25.2) 100-CR/Cri, mOS NR 80-PR/nPR, mOS NR (%) SO 60-Total, mOS 30.3 mos 40-Non-responder, 20mOS 10.7 mos 24 30 36 48 6 12 18 42 Time from liso-cel infusion (months) No. at risk CR or CRi 12 PR or nPR 12 28 18 2 0 Non-responder 7 4 4 Total 49 38 26 19 13


PFS by MRD Status

Median follow-up 20.8 months (95% CI 17.6–25.2)

Siddiqi T, et al. Lancet. 2023;402:641-654.

Cytokine Release Syndrome (CRS)

NC, nasal cannula; NRB, nonrebreather

Santomasso B, et al. J Clin Oncol. 2021;39(35):3978-3992. Neelapu et al. Nat Rev Clin Oncol. 2018;15(1):47-62. Lee et al. Biol Blood Marrow Transplant. 2019;25(4):625-638.

Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS)

ICE 7-9 Awakens spontaneously	 Supportive Care
ICE 3-6 Awakens to voice	 Consider dexamethasone x1
ICE 0-2 Awakens to tactile stimulus Any short seizure Focal/local cerebral edema on imaging	 Dex 10mg q6h until ≤ Gr 2
ICE 0 Unarousable Prolonged/repetitive seizure w/o return to baseline Deep focal motor weakness Diffuse cerebral edema or CN VI palsy <i>OR</i> Papilledema or Cushing's trial	 Solumedrol 1g qd x 3 d, then taper

CN VI, sixth cranial nerve

Santomasso B, et al. J Clin Oncol. 2021;39(35):3978-3992; Neelapu et al. Nat Rev Clin Oncol. 2018;15(1):47-62; Lee et al. Biol Blood Marrow Transplant. 2019;25(4):625-638.

Predictors of High-Grade CRS and ICANS

PRETREATMENT

- High tumor burden
- High pretreatment LDH
- High pretreatment inflammatory markers
- ? High pretreatment monocyte count

POSTTREATMENT

- High peak CAR T-Cell levels
- High peak cytokine levels
- Markers of DIC (including fibrinogen levels dropping)
- Early CRS

Short-Term Monitoring: Days to Weeks From Infusion

OUTPATIENT

- Patient housed near treating center for **4 weeks**
 - Abstain from driving for up to 8 weeks following CAR T-cell infusion due to a low risk of recurrent CRS and/or NT
- Patient and caregiver instructed on how to take vital signs and monitor for neurologic toxicity and given tools (eg, thermometers) for assessing and recording these data
- Patient scheduled to return to the treating center daily for at least 7 days for labs and review of vital signs/labs
- Patient admitted at the onset of fever and/or confusion until resolution of CRS and/or NT

INPATIENT

- Patient is admitted for up to 7 days or until the resolution of CRS and/or NT
- After discharge, patients remain within 2 hours of the treating center for up to **4 weeks**
- Abstain from driving for up to 8 weeks following CAR T-cell infusion due to a low risk of recurrent CRS and/or NT
- Patients are monitored for ongoing cytopenias, hydration status; first response assessment at 4 weeks

Caregiver present 24h a day for whatever portion of the 4 weeks post-CAR-T is spent out of the hospital

NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®): Management of Immunotherapy-Related Toxicities v1.2024. https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf

CAR T-Cell Therapy and Long-Term Toxicities

B-CELL APLASIA/ HYPOGAMMAGLOBULINEMIA

- ~40-50% B-NHL pts s/p CD19 CARs will NOT have IgG recovery by 24 months
- Immunoglobulin levels should be monitored following therapy

CYTOPENIAS

- Grade ≥3 cytopenias unresolved by Day 30 posttreatment occur in 25-30% of patients
- Median time to recovery 6 m
- Blood counts should be monitored

INFECTIONS

- Occurred in 35-50% of patients treated with approved agents in pivotal trials
- Median time to infection is 1 m for bacterial infections, and 2-3 m for viral and fungal infections

NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines[®]): Prevention and Treatment of Cancer-Related Infections v2.2023. https://www.nccn.org/professionals/physician_gls/pdf/infections.pdf; NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines[®]): Management of Immunotherapy-Related Toxicities v1.2024. https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf

Long-Term Monitoring: Weeks to Months From Infusion

ONGOING MONITORING

- Prolonged cytopenias transfusions as indicated; G-CSF and TPO-mimetics as needed
- B-cell aplasia (IgG levels) replete with IVIG for levels < 400
- Infection
- Relapse
- Secondary malignancies

PROPHYLAXIS

- Antibiotic (herpes and PJP) prophylaxis
 - Variable practices we continue for at least 6 months at which time we measure the CD4 count and only discontinue when >200

VACCINATION

- Influenza yearly
- Post-transplant vaccines resume 12 months after CAR T-cell therapy?
- COVID vaccination 3 months from CAR T-cell therapy (unknown)

Upon relapse patients should be biopsied whenever possible to help determine next treatment

G-CSF, granulocyte-colony stimulating factor; IVIG, intravenous immunoglobulin; PJP, *Pneumocystis jirovecii* pneumonia

NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines[®]): Prevention and Treatment of Cancer-Related Infections v2.2023. https://www.nccn.org/professionals/physician_gls/pdf/infections.pdf; NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines[®]): Management of Immunotherapy-Related Toxicities v1.2024. https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf

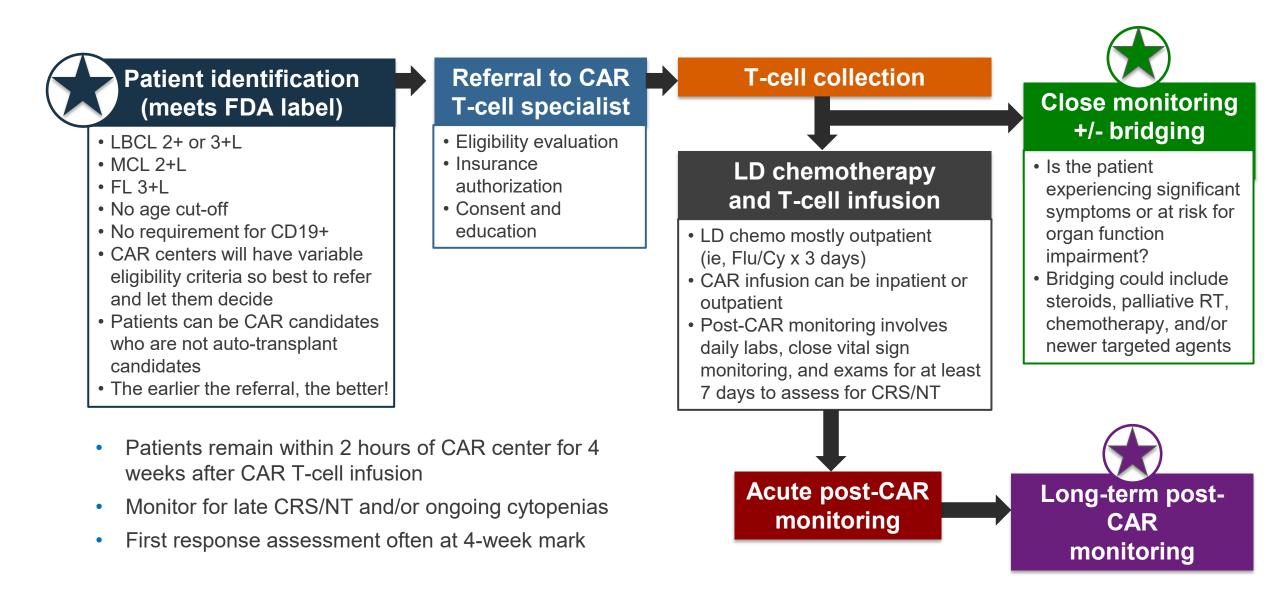
Considerations for Community Oncologist: When to Ask for Help?

Cytopenias

- Neutropenia with ANC < 500: give G-CSF, consider IVIG
- Persistent, transfusion dependent thrombocytopenia: try TPO-mimetics
- Any cytopenias lasting more than 6 months: obtain bone marrow biopsy

Frequent or obscure infection

- Consider opportunistic infections like PJP, CMV, HHV6, and fungal infections
- Check IgG and replace if <400 (q1-3 months)
- Continue trimethoprim / sulfamethoxazole and acyclovir through month 6 and only stop when CD4 count is > 200


New neurologic signs or symptoms or syndromes

Relapsed disease

• Biopsy whenever possible to prove lymphoma and to understand available targets

NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®): Management of Immunotherapy-Related Toxicities v1.2024 https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf

A Patient's Journey With CAR T-Cell Therapy

Key Patient and Disease Factors in Determining Candidacy for CAR T-Cell Therapy

Indications

- Does the patient have a disease and therapy history that meets FDA label?
- Does the patient meet the criteria for a clinical trial?

Kinetics of disease progression

- Can the patient tolerate leukapheresis (without immediate use of steroids/chemotherapy) and remain stable until the T-cell infusion (3-4 weeks)?
- Does the patient need alternative therapy prior to CAR T-cell therapy consideration?

Immediate prior therapy

• How would this affect the ability to successfully manufacture CAR T-cells (ie, obtain sufficient numbers of T cells and expand)?

Concomitant immunosuppressive therapy

• Can this be safely stopped prior to collection?

Active infection

Higher risk of complications if patient experiences CRS

Non-disease-related comorbidities

Does the patient have organ function reserve to tolerate toxicities of CAR T-cell therapy, namely CRS and ICANS
 Cardiac, pulmonary, renal, bone marrow, CNS

Hayden P, et al. Ann Oncol. 2022;33(3):259-275. Amini L, et al. Nat Rev Clin Oncol. 2022;19(5):342-355.

CAR T-Cell Referral to and From the Community: Lessons Learned

REFERRALS

- Refer all eligible patients as early as possible ideally 1 line of therapy BEFORE it is indicated
 - Regardless of age or comorbidities: let the treating center decide
 - Know your CAR T-cell MDs for easier and direct referral
 - Education, screening, and insurance authorization are all managed by the CAR T-cell treatment center

BRIDGING THERAPY

- Patient may require bridging and often prefer this to be done locally
 - Vital that the CAR T-cell center be forthcoming and specific with dates of collection and treatment for timing of bridging, recommendations for bridging, and monitoring for response and progression
 - Vital that the referring center communicate any new status changes with the patient with the CAR T-cell center in real-time

TIMING

- Patient will remain at CAR T-cell center for 4-5 wks from LD chemotherapy through 1 m following CAR T-cell infusion
 - This is when CRS and ICANS happen and are monitored and managed

ONGOING MANAGEMENT

- Upon referral back to community:
 - CAR T-cell center MUST update local practice about
 - CAR T-cell course and disease response assessment
 - Ongoing toxicities and how to monitor and manage them
 - Recommendations for long-term screening and surveillance
 - Community practices should update CAR T-cell center on persistence/resolution of ongoing toxicities, new toxicities, results of disease response surveillance assessments

Expert opinion; NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for B-cell Lymphomas v1.2024. https://www.nccn.org/professionals/physician_gls/pdf/b-cell.pdf

CAR T-Cell Updates in LBCL, MCL, and iNHL

CONCLUSIONS

- Axi-cel, liso-cel, and tisa-cel all induce durable responses in heavily pretreated LBCLs after ≥2 prior lines of therapy. Axi-cel and Liso-cel may offer superior efficacy to tisa-cel.
- Axi-cel and liso-cel are superior to 2nd-line chemotherapy +/- ASCT in patients with primary refractory or relapsed LBCL within 12 months of frontline therapy. Liso-cel is also approved as 2nd-line therapy in transplant-ineligible patients regardless of initial remission duration.
- Axi-cel and tisa-cel are highly effective in 3rd-line or later follicular lymphoma, for which they are FDA approved. Liso-cel is also highly effective and this data is being reviewed by the FDA.
- **Brexu-cel** is now a preferred treatment for **MCL** that is relapsed/refractory after chemoimmunotherapy and BTK inhibition. **Liso-cel** is also highly effective and this data is being reviewed by the FDA.
- **Liso-cel** demonstrates activity in BTK- and venetoclax-refractory CLL and is now approved for **SLL/CLL** after at least 2 prior lines of therapy, including a BTKi and a BCL-2i
- Toxicities are typically manageable and reversible but require trained centers
- Multiple strategies under investigation to enhance efficacy and reduce toxicity